Page 32

FT_03_2014

Fotos: Marel Townsend Convenience-Produkte Convenience Products Image 2: Meat mass temperature during portioning vs. texture cooked product. Meat mass structure and ice-crystallization at given temperature Grafik 2: Temperatur der Fleischmasse während der Portionierung vergl. mit der Textur des gekochten Produkts. Fleischstruktur und Eiskristallbildung bei bestimmten Temperaturen. Härte/ Hardness Festigkeit/ Cohesiveness Temperatur während Portionierung C°/ Temperatures during forming °C 0°C -4°C 5 mm Bei höheren Temperaturen geht Härte verloren, bei kälteren Temperaturen büßt das Produkt an Festigkeit ein. / At higher temperatures, the products looses in hardness, at colder temperatures it looses cohesiveness. (z. B. Filet, gefüllte Hühnerbrust, ganzem Muskelfleisch wie Schnitzel, gefüllten Produkte und 3D-Produkte wie Fleisch-bällchen oder Cevapcici). Darüber hinaus hat die Portio-nierung bei höheren Tempera-turen auch wirtschaftliche Vor-teile. Die Enthalpieänderung ist groß, sie reicht von flüssiger bis hin zu fester Form und er-fordert viel Energie. Weiterver-arbeitungsbetriebe können bei der Fleischvorbereitung große Mengen an Kühlmittel sparen (im Vergleich zur Portionie-rung unter hohem Druck). Zu Beginn des Kochprozesses ent-halten die Produkte weniger Wasser. Das Schmelzen von Eiskristallen erfordert Energie. A Textur: Textur ist ein sehr entscheidender Qualitätsas-pekt eines Endprodukts. Die Verarbeitungstemperatur hat einen wichtigen Einfluss auf die Textur. Kältere Fleisch-massen enthalten mehr Eis-kristalle und sind fester als warme Fleischmassen. Es wird eine größere Kraft (ein höhe-rer Druck) benötigt, um das Fleisch zu pumpen und die Formen zu füllen. Die gefrore-ne Struktur muss unterbrochen werden, um fließen zu können. Dabei werden Muskelstruktur und Zellen zerstört, und dies beeinflusst die wahrgenom- mene und gemessene Textur eines gegarten Produkts. Experimente bei verschiedenen Temperaturen zeigen (für die gemessene Textur nach dem Garen) einen höheren Verlust der Härte (anfängliche Bissfes-tigkeit) sowie einen höheren Verlust der Festigkeit, wenn die Fleischmasse kälter ist (Grafik 2). Messung der Textur Viele fleischverarbeitende Un-ternehmen haben Sensorik- Panels, die Textur oder Biss der gegarten Produkte bewerten. Eine Texturanalyse lässt sich auch anhand einer sogenann-ten Texturprofilanalyse (TPA) durchführen (Grafik 3). Hiermit kann die von den Sensorik-Pa-nels wahrgenommene Textur prognostiziert werden, sie ver-meidet Subjektivität und ist im Vergleich zu Sensorik-Panels genauer. Die TPA kann aber nicht gewährleisten, dass das Produkt so schmackhaft wie gewünscht ist; diese Einschät-zung erfolgt durch die senso-rische Bewertung. Für die Ent-wicklung von (Portionierungs-) ture and cells and influences the perceived and measured texture of a cooked product. Portioning experiments at var-ious temperatures show (for the measured texture after cook-ing) increased loss of hardness (initial bite) and increased loss of cohesiveness with a colder meat dough (see image 2). Measuring texture Many meat production com-panies have sensory panels evaluating the texture or bite of cooked products. A texture analysis can also be carried out with a so-called ‘texture pro-file analysis’ (TPA). This can predict the perceived texture of sensory panels, avoids sub-jectivity, and is more accurate compared to sensory panels. However, TPA does not indi-cate whether the product is as palatable as desired; sen-sory evaluation does. For the development of (portioning) equipment and processes, TPA assists in making the right choi-ces for the principle of process, capabilities, functions and set-tings of the equipment. An example of connecting sen-sory results to TPA is to check compression force of the prod-uct. For this a sample is meas-ured with a probe recording the forces when a product is com-pressed. The probe compresses the product twice or more, the forces measured are then trans-lated into predictive numbers for the perceived texture by the sensory panels. Some sensory parameters of the end product that can be measured are cohe-siveness, springiness, gummi-ness, chewiness and resilience (see image 3). A Shape: Another important aspect of portioning technology is the shape of the end product. A producer strives for consis- tent end products that all have the same shape as much as pos-sible and show no faults. Shape consistency is desired even for home-made style products. Some common defects in por-tioned fresh products are: lips, knock-out cup markings and rough edges. All these defects ature, the overall rigidity (y-ax-is) changes as well. The overall rigidity is a general measure-ment, but it holds many ‘se-crets’. For instance, relaxation, adhesion and elasticity of the meat mass are factors that also determine the quality of your end product. Meat doughs portioned with high-pressure drum/mould systems are to be found in the colder range (more to the left). Low-pressure (RevoPortioner) portioning can handle warmer masses, more to the right on the x-axis. With the technological under-standing and knowledge of the raw material aspects in mind, Townsend Further Processing’s low-pressure portioning tech-nology provides processors with the flexibility to meet the optimum processing conditions for the preservation of the in-itial meat structure. It gives more room to realise the pro-duction of a larger variety of end products (e.g. tenderloins, chicken Kiev, whole muscle products, such as schnitzel, products with inclusions and 3D-products, such as meat balls or Cevapcici). Furthermore, portioning at a higher temperature also has fi-nancial advantages. The change in enthalpy is big; moving from a liquid to a solid state requires a lot of energy. Processors can save a substantial quantity of coolants in the meat preparation process (compared to high-pres-sure portioning). When products move to the cooking process, they also contain less frozen wa-ter; melting ice-crystals is ener-gy consuming. A Texture: Texture is a very decisive quality aspect of an end product. The processing temperature has substantial in-fluence on the texture (Image 3). Colder meat dough contains more ice crystals and is more rigid than warmer dough. More force (a higher pressure) is re-quired to pump the meat and fill the moulds. Thus, in order to flow through the pump and into the moulds, the frozen structure is disrupted. This has a destruc-tive effect on the muscle struc- 32 3/2014


FT_03_2014
To see the actual publication please follow the link above